Characterizing Bitterness: Identification of Key Structural Features and Development of a Classification Model

نویسندگان

  • Sarah Rodgers
  • Robert C. Glen
  • Andreas Bender
چکیده

This work describes the first approach in the development of a comprehensive classification method for bitterness of small molecules. The data set comprises 649 bitter and 13 530 randomly selected molecules from the MDL Drug Data Repository (MDDR) which are analyzed by circular fingerprints (MOLPRINT 2D) and information-gain feature selection. The feature selection proposes substructural features which are statistically correlated to bitterness. Classification is performed on the selected features via a naïve Bayes classifier. The substructural features upon which the classification is based are able to discriminate between bitter and random compounds, and thus we propose they are also functionally responsible for causing the bitter taste. Such substructures include various sugar moieties as well as highly branched carbon scaffolds. Cynaropicrine contains a number of the substructural features found to be statistically associated with bitterness and thus was correctly predicted to be bitter by our model. Alternatively, both promethazine and saccharin contain fewer of these substructural features, and thus the bitterness in these compounds was not identified. Two different classes of bitter compounds were identified, namely those which are larger and contain mainly oxygen and carbon and often sugar moieties, and those which are rather smaller and contain additional nitrogen and/or sulfur fragments. The classifier is able to predict 72.1% of the bitter compounds. Feature selection reduces the number of false-positives while also increasing the number of false negatives to 69.5% of bitter compounds correctly predicted. Overall, the method presented here presents both one of the largest databases of bitter compounds presently available as well as a relatively reliable classification method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Automatic Fingerprint Classification Algorithm

Manual fingerprint classification algorithms are very time consuming, and usually not accurate. Fast and accurate fingerprint classification is essential to each AFIS (Automatic Fingerprint Identification System). This paper investigates a fingerprint classification algorithm that reduces the complexity and costs associated with the fingerprint identification procedure. A new structural algorit...

متن کامل

An Automatic Fingerprint Classification Algorithm

Manual fingerprint classification algorithms are very time consuming, and usually not accurate. Fast and accurate fingerprint classification is essential to each AFIS (Automatic Fingerprint Identification System). This paper investigates a fingerprint classification algorithm that reduces the complexity and costs associated with the fingerprint identification procedure. A new structural algorit...

متن کامل

A General Investigation on the Combination of Local and Global Feature Selection Methods for Request Identification in Telegram

Nowadays, the use of various messaging services is expanding worldwide with the rapid development of Internet technologies. Telegram is a cloud-based open-source text messaging service. According to the US Securities and Exchange Commission and based on the statistics given for October 2019 to present, 300 million people worldwide used telegram per month. Telegram users are more concentrated in...

متن کامل

Explaining the Role of Key Indicators Leading to The Success of Iran in The Rio Olympics Based on SPLISS Model

The purpose of this study was to explain the role of key indicators leading to the success of Iran in the Rio Olympics based on the SPLISS model. The research method was descriptive-analytical, in terms of purpose it was practical, and it was a fieldwork and questionnaires base in terms of data collection. The statistical population of this study was all of the athletes, coaches and Participant...

متن کامل

A Hybrid Classifier for Characterizing Motor Unit Action Potentials in Diagnosing Neuromuscular Disorders

Background: The time and frequency features of motor unit action potentials (MUAPs) extracted from electromyographic (EMG) signal provide discriminative information for diagnosis and treatment of neuromuscular disorders. However, the results of conventional automatic diagnosis methods using MUAP features is not convincing yet.Objective: The main goal in designing a MUAP characterization system ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 46 2  شماره 

صفحات  -

تاریخ انتشار 2006